• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Department of Chemistry and Pharmacy
  • FAUTo the central FAU website
  1. Friedrich-Alexander University
  2. Faculty of Sciences
  3. Department of Chemistry and Pharmacy
Suche öffnen
  • Deutsch
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Help
  1. Friedrich-Alexander University
  2. Faculty of Sciences
  3. Department of Chemistry and Pharmacy

Department of Chemistry and Pharmacy

Navigation Navigation close
  • Department
    • Administrative Office
    • Boards
    • Sections
    • Centers
    Portal Department
  • Research
    • Sections
    • Research areas
    • Research groups
    • Young investigators
    Portal Research
  • Study
    • Chemistry / Molecular Science
    • Pharmacy
    • Food Chemistry
    • Computational Molecular and Materials Science
    • PhD studies
    Portal Study
  • Events
  1. Home
  2. Research
  3. Projects

Projects

In page navigation: Research
  • Awards
  • Centers
  • Research areas
  • Research groups
  • Sections
  • Young investigators
  • PhD studies
  • DFG Research Projects
  • EU Project: NoBiasFluors
  • Emerging Talents Initiative
  • FAU Expired Drug Initiative
  • SolarTech
  • Publications
  • Projects

Projects

The following data is an export of the research information system CRIS.

Current research projects at the Department of Chemistry and Pharmacy

Term: 1. March 2025 - 29. February 2028
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: Alejandro Cadranel

The definitive replacement of fossil fuels by solar fuels requires to improve the conversion efficiencies that are available today. Notably, inspirational natural photosynthesis is not very efficient in terms of solar energy conversion to fuels. Photosynthetic chromophores dissipate one fourth of the absorbed light via internal conversion (IC) followed by vibrational relaxation (VR) to the lowest energy excited states. IC and VR shape a decay cascade for the excited state population, that reaches…

→ More information

Term: 1. February 2025 - 31. January 2031
Funding source: Stiftungen
Project leader: Carolin Müller
Carolin Müller

Prof. Dr. Carolin Müller

  • Twitter: Page of Carolin Müller
  • LinkedIn: Page of Carolin Müller
  • Google Scholar: Page of Carolin Müller
  • ORCID: Page of Carolin Müller
  • Research Gate: Page of Carolin Müller

This project focuses on improving the use of visible light in chemical reactions through computational approaches, aiming to optimize energy transfer catalysis. By studying the relationship between molecular structures and energy gaps, the project seeks to develop design principles that guide more efficient chemical processes, particularly in reactions involving the selective isomerization of alkenes.

→ More information

Term: 1. December 2024 - 30. November 2027
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: Ryan Crisp
Ryan Crisp

Dr. Ryan Crisp

Während erneuerbare Energiequellen zunehmend fossile Brennstoffe in der Stromerzeugung ersetzen, erfordert ihre weitreichende Nutzung weitere Fortschritte hinsichtlich der Materialeigenschaften und Verarbeitungskosten, um das EU-Ziel einer kohlenstoffarmen Wirtschaft bis 2050 zu erreichen. Die effizientere Umwandlung von Solarenergie in Elektrizität mit kostengünstigeren Materialien und einfacheren Methoden steht im Mittelpunkt der Erforschung erneuerbarer Energie. Hierbei erzielte die Entwicklung de…

→ More information

Term: 1. December 2024 - 30. November 2026
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
Project leader: Susanne Wintzheimer
Susanne Wintzheimer

Dr. Susanne Wintzheimer

→ More information

Term: 1. July 2024 - 31. December 2026
Funding source: Bayerisches Staatsministerium für Wissenschaft und Kunst (StMWK) (seit 2018)
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

TheBaCzALD partnerswill invent new chemistry and develop newprocesses for creating two-dimensional photoactive semiconductors using atomic layerdeposition (ALD), specifically the newly established technology of ALD fromprecursors dissolved in liquid solvents (‘solution ALD’, sALD). Wewill aim for ‘post-graphene’ semiconductors based specifically on the elements of group 15,including elemental phosphorus and antimony (‘phosphorene’ and ‘antimonene’).BTHA funding will support the synthesis of ne…

→ More information

Term: 1. May 2024 - 30. April 2029
Funding source: EU / European Research Council
Project leader: Karl Mandel
Karl Mandel

Prof. Dr. Karl Mandel

So far, materials are seen as passive items. This project aims at providing a solution that can turn objects into matter that can perceive and communicate trigger events. If materials are turned capable of reporting their encountered history, this will significantly contribute to i) ensuring product safety and reliability, ii) making predictive maintenance possible, iii) making complex recycling fates of materials transparent, and iv) enabling autonomous, robot-controlled, resilient manufacturing…

→ More information

Term: 1. September 2023 - 31. August 2026
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: Dagmar Fischer
Dagmar Fischer

Prof. Dr. Dagmar Fischer, Apoth.

Chair

  • Google Scholar: Page of Dagmar Fischer
  • Research Gate: Page of Dagmar Fischer

Therapeutic options for Cystic Fibrosis (CF), the most common genetic metabolic disease in Europe, are insufficient. We propose a novel therapeutic strategy that obviates the need to overcome the human epithelial airway barrier by directly addressing the bacterial infections that cause respiratory failure and high CF patient mortality. Namely, an inhalable application of antisense oligomers (ASOs) targeting selectively the chronic microbial pulmonary CF lung infections. To create a basis for this new ASO-based CF therapy approach we will design and synthesize potent and type selective ASOs, define their physiological and resistance effects and further explore the targeted transport and release when formulated as modular systems.

→ More information

Term: 1. October 2025 - 30. June 2029
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

→ More information

Term: 1. October 2025 - 30. June 2029
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Carolin Müller
Carolin Müller

Prof. Dr. Carolin Müller

  • Twitter: Page of Carolin Müller
  • LinkedIn: Page of Carolin Müller
  • Google Scholar: Page of Carolin Müller
  • ORCID: Page of Carolin Müller
  • Research Gate: Page of Carolin Müller

Project M2 is devoted to the development and application of approaches to explore structure- and size-dependent properties of excited state phenomena in transition metal dichalcogenides, V-VI chalcogenides, and perovskites as well as molecular photoswitches anchored on thes ematerials, including electronic absorption and emission spectra and the yield and rate of certain photoinduced processes. The developed procedures will be critically validated through close collaboration with experimental spectroscopic projects, reinforcing our understanding of how certain structures determine the excited state properties of materials.

→ More information

Term: 1. October 2025 - 30. June 2029
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

Projekt F4 führt die Lösungs-ALD (von C1) in die Anwendung, indem es ihre Verwendung zum Abscheiden der Lichtabsorptionsschicht in effizienten Solarzellen demonstriert. Das Projekt schließt den ChemPrint-Innovationszyklus, indem es die Kontrolle auf atomarer Ebene bei der Lösungsverarbeitung mit Leistungsquantifikatoren (mit F3) kombiniert. Es bietet direkte Vergleiche von Verarbeitungstechniken, zwischen sALD und gALD einerseits und zwischen sALD und auf Verdampfung basierenden Methoden andererseits (mi…

→ More information

Term: 1. October 2025 - 30. June 2029
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

Projekt C1 zielt darauf ab, die Morphologie der Halbleiterabscheidung durch die Wechselwirkungen zu steuern, die während des sALD-Wachstums zwischen dem Substrat, der festen Schicht und der Flüssigkeit auftreten. Unter Verwendung von Informationen aus M1, M3, M4, M5 und dank selbstassemblierten molekularen Monoslagen aus F6 zur Einstellung der Dichte der Nukleationsstellen und Grenzflächenenergien werden Liganden und Lösungsmittel verwendet, um den Wachstumsmodus von homogen vertikal (Film) zu …

→ More information

Term: 1. January 2025 - 30. June 2027
Funding source: Bundesministerium für Wirtschaft und Energie (BMWE)
Project leader: Dagmar Fischer
Dagmar Fischer

Prof. Dr. Dagmar Fischer, Apoth.

Chair

  • Google Scholar: Page of Dagmar Fischer
  • Research Gate: Page of Dagmar Fischer

Im Mittelpunkt des Projekts steht die Entwicklung neuer Assay-Systeme zur Charakterisierung molekularer und partikulärer Delivery-Systeme und ihrer Interaktion mit membranösen Strukturen und zur Erfassung schwacher und/oder seltener Wechselwirkungen von Wirkstoffmolekülen mit ihren TargetMolekülen. Diese neuen Assay-Systeme basieren messtechnisch und analytisch auf einer Erweiterung des Methodenspektrums der bereits etablierten FCS-Technologie (FCS-easy Reader). Im Rahmen des ZIM geförderten „FCS…

→ More information

Term: 1. January 2025 - 31. December 2027
Funding source: Bundesministerium für Wirtschaft und Energie (BMWE)
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

→ More information

Term: 2. January 2019 - 31. December 2027
Funding source: DFG / Graduiertenkolleg (GRK)
Project leader: Dirk Zahn, Paolo Moretti
Dirk Zahn

Prof. Dr. Dirk Zahn

The abrasion and fracture toughness of polymers can considerably be increased by adding hard nanoparticles such as silica. This is mainly caused by the development of localized shear bands, initiated by the stress concentrations stemming from the inhomogeneity of the composites. Other mechanisms responsible for toughening are debonding of the particles and void growth in the polymer matrix. Both phenomena strongly depend on the structure and chemistry of the polymers and shall be explored for branched networks (epoxy) and matrices of nestled fibres (cellulose, aramid).

The goal of the present project is to develop and apply dynamics simulation approaches to understanding polymer-nanoparticle and polymer-polymer interactions at i) the atomic scale and ii) at larger scales using coarse-graining.

→ More information

Term: 2. January 2019 - 31. December 2027
Funding source: DFG / Graduiertenkolleg (GRK)
Project leader: Bernd Meyer, Erik Bitzek
Bernd Meyer

Prof. Dr. Bernd Meyer

The chemical environment can critically affect the fracture processes, leading to subcritical crack growth. The inner surfaces of the cracks are covered by adsorbates from the surrounding liquid or gas phase. When bonds break in the course of crack propagation, these adsorbates strongly react with the newly created surfaces, for example, by saturating the broken bonds. Examples are stress corrosion cracking in metals and semiconductors or the moisture-driven crack growth in silica. In both cases, the crack propagation induces and drives the incorporation of oxygen species, leading to an oxidation/hydroxylation of the inner surfaces, which completely alters the chemistry at the crack tip.

In this project we propose to study the complex interplay between bond breaking at the crack tip and the adsorption/bond saturation with molecules from the environment by MD simulations. The aim is to obtain mechanistic insights into environmentally-assisted fracture for model ceramic materials.

→ More information

Term: 2. January 2019 - 31. December 2027
Funding source: DFG / Graduiertenkolleg (GRK)
Project leader: Julia Mergheim, Dirk Zahn
Dirk Zahn

Prof. Dr. Dirk Zahn

The mechanical properties and the fracture toughness of polymers can be increased by adding silica nanoparticles. This increase is mainly caused by the development of localized shear bands, initiated by the stress concentrations due to the silica particles. Other mechanisms responsible for the observed toughening are debonding of the particles and void growth in the matrix material. The particular mechanisms depend strongly on the structure and chemistry of the polymers and will be analysed for two classes of polymer-silica composites, with highly crosslinked thermosets or with biodegradable nestled fibres (cellulose, aramid) as matrix materials.

The aim of the project is to study the influence of different mesoscopic parameters, as particle volume fraction, on the macroscopic fracture properties of nanoparticle reinforced polymers.

→ More information

Term: 2. January 2019 - 31. December 2027
Funding source: DFG / Graduiertenkolleg (GRK)
Project leader: Paolo Moretti, Bernd Meyer
Bernd Meyer

Prof. Dr. Bernd Meyer

Interface failure in both tension and shear is characterized by a dynamic interplay of local processes (breaking of bonds, interface contacts or – in case of frictional interfaces – asperities) and long-range elastic load re-distribution which may occur either quasi-statically or in a dynamic manner associated with wave propagation phenomena and can be mapped onto a network of partly break-able load transferring elements. This interplay may give rise to complex dynamics which are strongly influenced by contact geometry and also the chemical properties of the interface. A particularly simple case is the transition from static to sliding friction between continuous bodies where such dynamic collective phenomena are being discussed under the label of ‘detachment waves’.

The goal of P7 is to generalize this concept of ‘detachment waves’ to general problems of failure of frictional or adhesive joints, and to interfaces and bodies which possess a complex multi-scale chemical or geometrical structure, including hierarchical geometrical structures as encountered in biosystems.

→ More information

Term: 1. October 2025 - 30. June 2029
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

ChemPrint reinvents semiconductors research. This CRC shall inaugurate the patterned growth of functional inorganic semiconductors from solution with atomic precision using molecular chemical control. The mild processing conditions are inherently energy-efficient and the additive approach materials-efficient, in stark contrast to the characteristics of traditional semiconductor manu-fac¬tu¬ring. According to our tenet, the ultimate degree of control achieved routinely in classical molecular c…

→ More information

Term: 1. October 2025 - 30. June 2029
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

ChemPrint erfindet die Halbleiterforschung neu. Der SFB führt das strukturierte Wachstum funktionaler anorganischer Halbleiter aus der Lösung mit atomarer Präzision unter Verwendung molekularchemischer Kontrolle ein. Die milden Verarbeitungsbedingungen sind energieeffizient und der additive Ansatz materialeffizient, im Gegensatz zu den Merkmalen traditioneller Halbleiterherprozessierung. Unsere Überzeugung ist, dass der ultimative Grad an Kontrolle, der routinemäßig in der klassischen Molekülchemie erreic…

→ More information

Term: 1. June 2024 - 31. May 2029
Funding source: DFG / Graduiertenkolleg (GRK)
Project leader: Robert Schober, Kathrin Castiglione, Andrea Büttner, Dietmar Drummer, Georg Fischer, Heinrich Sticht, Christoph Alexiou, Helene Loos, Vahid Jamali Kooshkghazi, Jens Kirchner
Andrea Büttner

Prof. Dr. Andrea Büttner

  • LinkedIn: Page of Andrea Büttner
  • Xing: Page of Andrea Büttner
  • Publons: Page of Andrea Büttner
  • Scopus: Page of Andrea Büttner
  • Google Scholar: Page of Andrea Büttner
  • ORCID: Page of Andrea Büttner
  • Research Gate: Page of Andrea Büttner
Helene Loos

PD Dr. Habil. Helene Loos

  • ORCID: Page of Habil. Helene Loos

A new research training group at FAU is being funded by the German Research Foundation. The research training group entitled „Synthetic Molecular Communications Across Different Scales: From Theory to Experiments“, or SyMoCADS for short, is led by Prof. Robert Schober (as spokesperson) and Prof. Kathrin Castiglione (Chair of Bioprocess Engineering) as co-spokesperson.

This structured training program addresses the highly interdisciplinary field of molecular communication. Molecules are used as information carriers to communicate with objects, cells or organisms in environments that are not suitable for traditional communication systems based on electromagnetic waves. Three different work clusters involving researchers from the Departments of Electrical Engineering, Chemical and Bioengineering, Mechanical Engineering, Chemistry and Pharmacy and Biochemistry as well as the University Hospital are investigating the sensing and control of bioprocesses on a microliter scale, the control of magnetic nanoparticles in blood vessels and molecular communication via volatile odorous objects.

→ More information

Term: 1. April 2023 - 1. March 2028
Funding source: DFG / Graduiertenkolleg (GRK)
Project leader: Janina Maultzsch, Dirk Michael Guldi, Marcus Halik, Andreas Hirsch, Sabine Maier, Heiko B. Weber, Hans-Peter Steinrück
Marcus Halik

Prof. Dr. Marcus Halik

Andreas Hirsch

Prof. Dr. Andreas Hirsch

  • Scopus: Page of Andreas Hirsch
  • ORCID: Page of Andreas Hirsch
Sabine Maier

Prof. Dr. Sabine Maier

Hans-Peter Steinrück

Prof. Dr. Dr. h.c. Hans-Peter Steinrück (Senior Professor)

RTG2861-PCL is a collaboration between Technische Universität Dresden (TUD) and Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), and is funded by Deutsche Forschungsgemeinschaft. Our goal is to achieve atomic-precision synthesis and exploration of new planar carbon lattices (PCLs) for next-generation quantum materials, functional precision membranes, optoelectronic and electrochemical devices, by employing advanced experimental and theoretical methods in an interdisciplinary approach bridging synthetic chemistry, condensed-matter physics, and materials science. Our dual-site TUD & FAU collaboration will establish the standard in research-based education in the field of PCL by combining our expertise in synthesis, function exploration, and theoretical description, and by exploiting the complementarity in laboratory equipment available at our institutions.

→ More information

Completed research projects at the Department of Chemistry and Pharmacy

Term: 15. March 2025 - 15. December 2025
Funding source: Fraunhofer-Gesellschaft
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

→ More information

Term: 1. January 2023 - 31. December 2024
Funding source: EU / Marie Sklodowska-Curie Actions
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

→ More information

Term: 1. January 2023 - 31. December 2024
Funding source: Marie-Skłodowska-Curie Actions (MSCA)
Project leader: Pablo Jiménez Calvo, Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

→ More information

Term: 1. October 2022 - 30. September 2024
Funding source: Stiftungen
Project leader: Susanne Wintzheimer
Susanne Wintzheimer

Dr. Susanne Wintzheimer

→ More information

Term: 1. October 2022 - 30. September 2025
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: Petra Imhof
Petra Imhof

Prof. Dr. Petra Imhof

Technical Director

→ More information

Term: 1. September 2022 - 31. August 2025
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: Dagmar Fischer
Dagmar Fischer

Prof. Dr. Dagmar Fischer, Apoth.

Chair

  • Google Scholar: Page of Dagmar Fischer
  • Research Gate: Page of Dagmar Fischer

Nanoparticles as carriers of pharmaceutical agents that can be released at specific times and in specific target areas in the sense of so-called “drug delivery” are of great interest to medicine. An important area of application is localized chemotherapy for tumor diseases, which prevents the entire body from being exposed to the therapeutic agent, thereby reducing otherwise harmful side effects. Due to their small size, individual nanoparticles have an advantage over larger drug carriers in the form of microparticles in that they can utilize the EPR effect (enhanced permeability and retention). This allows the drug to penetrate more deeply into tumor tissue and have a stronger effect on it. Our project focuses on “sonosensitive” nanostructures in which the active substances can be released by the action of ultrasound. Focusable ultrasound fields are required to limit this effect to specific tumor regions. Until now, the desired effect on sonosensitive nanoparticles of a suitable size has only been detectable at low ultrasound frequencies, which do not allow sufficient focusing. However, the applicants have recently succeeded in developing new sonosensitive nanoparticles (in the form of spheres and capsules) in which the effect also occurs at higher ultrasound frequencies with well-focused wave fields. The new nanoparticles are rehydrated, freeze-dried polylactic acid nanospheres in a water dispersion with a diameter of 120 nm, on which broadband noise is generated by sonication at 835 kHz, which is attributable to transient, drug-releasing cavitation. The planned project aims to optimize nanoparticle production with regard to efficient drug release. The mechanism of ultrasound-induced cavitation of such nanostructures will be elucidated. Microscopic methods (e.g., atomic force microscopy) will be used for the morphological characterization of the particles. For the functional characterization of the particles' effectiveness, an actuator-sensor system will be implemented that has a unit on the actuator side for generating focused power ultrasound, which allows the cavitation process to be optimized by varying relevant ultrasound parameters. On the sensor side, various ultrasonic methods for passive and active detection of cavitation will be implemented and tested. The sensor modalities are to be used in a suitable combination to optimize nanoparticle production and the operating mode for efficient, cavitation-based drug release. Based on the findings obtained in the project, concept proposals and system designs for medical applications are to be developed.

→ More information

Term: 1. May 2022 - 31. October 2023
Funding source: ERC Proof of Concept (PoC)
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

→ More information

Term: since 1. February 2022
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: Ryan Crisp
Ryan Crisp

Dr. Ryan Crisp

→ More information

Term: 1. April 2021 - 31. July 2023
Funding source: Volkswagen Stiftung
Project leader: Karl Mandel
Karl Mandel

Prof. Dr. Karl Mandel

→ More information

Term: 27. November 2020 - 15. February 2021
Funding source: andere Förderorganisation
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

→ More information

Term: 1. October 2020 - 30. September 2023
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
Project leader: Karsten Meyer
Karsten Meyer

Prof. Dr. Karsten Meyer

  • Publons: Page of Karsten Meyer
  • ORCID: Page of Karsten Meyer

→ More information

Term: 1. July 2020 - 30. June 2021
Funding source: Deutsche Bundesstiftung Umwelt
Project leader: Jakob Reichstein

→ More information

Term: 1. July 2020 - 30. June 2021
Funding source: andere Förderorganisation
Project leader: Susanne Wintzheimer
Susanne Wintzheimer

Dr. Susanne Wintzheimer

→ More information

Term: 1. July 2020 - 30. June 2021
Funding source: andere Förderorganisation
Project leader: Susanne Wintzheimer
Susanne Wintzheimer

Dr. Susanne Wintzheimer

→ More information

Term: 1. July 2020 - 31. October 2021
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: Karl Mandel
Karl Mandel

Prof. Dr. Karl Mandel

Composite systems can allow for combinations of properties that cannot or hardly be found for homogenous compounds. For this purpose, the project is supposed to combine coordination polymers or MOFs with nano to microscale particle systems for the synthesis of composite systems. Therefore, it will be expanded to a joint project of two applicants of the respective expertise. The aimed-at composites shall exhibit simultaneous optical and magnetic properties, e.g. by combination of luminescence with…

→ More information

Term: 1. July 2020 - 31. December 2021
Funding source: Stiftungen
Project leader: Susanne Wintzheimer
Susanne Wintzheimer

Dr. Susanne Wintzheimer

→ More information

Term: 1. July 2020 - 30. November 2024
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: Peter Gmeiner, Olaf Prante
Peter Gmeiner

Prof. Dr. Peter Gmeiner

G-protein coupled receptors (GPCRs) are membrane proteins that are excellent targets for drugs. Approximately 30% of the approved drugs and currently developed drug candidates address G-protein coupled receptors. Orexin OX1 receptors, which belong to Class A GPCRs, are also regarded as highly interesting pharmaceutical targets. OX1 receptors are expressed in the central nervous system and are involved in eating disorders, addiction and pain processing. Furthermore, due to their expression on colon…

→ More information

Term: 1. June 2020 - 31. May 2021
Funding source: Deutsche Bundesstiftung Umwelt
Project leader: Stephan Müssig
Stephan Müssig

Dr. Stephan Müssig

→ More information

Term: 1. May 2020 - 30. June 2023
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
Project leader: Karl Mandel
Karl Mandel

Prof. Dr. Karl Mandel

→ More information

Term: since 1. March 2020
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

The storage of (renewable) electricity in chemical form (fuels) and its subsequent release occur in electrochemical devices such as electrolyzers and fuel cells. An economically viable exploitation of these devices requires electrode materials and architectures that are not only performant but also durable. However, electrocatalyst materials used to date are prone to corrosion and the factors affecting their stability in real electrode, which are complex multiphase entities, are not well understood.…

→ More information

Term: 1. February 2020 - 31. January 2023
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

→ More information

Term: 1. January 2020 - 31. December 2022
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: Timothy Clark

We aimto develop model systems with periodic, interpenetrating networks of electrondonor- and acceptor-phases based on the structural paradigm of metal-organicframeworks (MOFs). The MOFs allow maximum control over the nature of themolecular building blocks with specific electronic properties, their sequenceof assembly, their relative spatial orientation, their wall-thickness, andtheir overall orientation relative to a substrate. The goal of this project isto create such highly defined model systems,…

→ More information

Term: 1. July 2019 - 30. June 2022
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
Project leader: Rainer Fink
Rainer Fink

Prof. Dr. Rainer Fink

  • Publons: Page of Rainer Fink
  • Scopus: Page of Rainer Fink
  • Google Scholar: Page of Rainer Fink
  • ORCID: Page of Rainer Fink

→ More information

Term: 1. April 2019 - 31. March 2022
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: Stephan Tremmel, Benoit Merle, Bernd Meyer
Bernd Meyer

Prof. Dr. Bernd Meyer

The project aims at gathering the fundamental knowledge required for improving the calculation of the service life of solid lubricated rolling bearings, which are typically used in vacuum pumps and rotating
anodes of medical X-Ray devices. The project will specifically focus on MoS2 tribological coatings. The only service life calculation model available up to date relies on an empirical approach, based on the assessment of the wear rate from macroscopic contact parameters such…

→ More information

Term: 1. March 2019 - 28. February 2022
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

→ More information

Term: 1. July 2018 - 30. June 2020
Funding source: EU - 8. Rahmenprogramm - Horizon 2020
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

→ More information

Term: 1. June 2018 - 31. May 2021
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: Andreas Späth
Andreas Späth

Andreas Späth

→ More information

Term: 1. June 2018 - 31. May 2021
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

→ More information

Term: 1. May 2018 - 30. April 2019
Funding source: Stiftungen
Project leader: Sabrina Gensberger-Reigl
Sabrina Gensberger-Reigl

Dr. rer. nat. Sabrina Gensberger-Reigl

Akad. Oberrätin

  • LinkedIn: Page of Sabrina Gensberger-Reigl
  • ORCID: Page of Sabrina Gensberger-Reigl
  • Research Gate: Page of Sabrina Gensberger-Reigl

Die Verwendung von Phosphaten in der Herstellung von Wurst ist derzeit nahezu unumgänglich. Phosphate verbessern nicht nur die Konsistenz des Wurstbräts, sondern tragen auch dazu bei, dass ein unerwünschter Austritt von Wasser und Fett aus dem fertigen Produkt verhindert wird. In jüngster Zeit kann die Verwendung dieser Kutterhilfsstoffe jedoch auf eine ablehnende Verbraucherhaltung stoßen, da die Verwendung von Phosphaten deklarationspflichtig ist und somit zu einem negativen Eindruck führen kann.…

→ More information

Term: 1. January 2018 - 31. December 2023
Funding source: Research and Innovation Staff Exchange (RISE)
Project leader: Andriy Mokhir, Andreas Hirsch
Andriy Mokhir

Prof. Dr. Andriy Mokhir

Andreas Hirsch

Prof. Dr. Andreas Hirsch

  • Scopus: Page of Andreas Hirsch
  • ORCID: Page of Andreas Hirsch

The CLATHROPROBES project is devoted to the design and development of novel, highly efficient chiroptical, luminescent, IR, NMR and EPR probes for sensing and structural studies of biomolecules based on cage metal complexes (clathrochelates and lacunar complexes of spatial tris-diiminate ligands with encapsulated 3d-metal ion) as molecular reporters.
For successful design and synthesis of cage metal complexes (WP1), their complete structural and spectroscopic characterization (WP2), studies of their interactions with biomolecules and reporting properties, and their cytotoxicity and bioactivity in model systems (WP3), the project brings together researchers from four academic institutions and two industrial companies, representing six countries (PL, DE, UA, RO and AU; RU - participation till April 8th, 2022). The participants will contribute to the project with different, highly specific, yet complementary expertise, namely in chemical synthesis of clathrochelate complexes (PBMR and FAU; INEOS RAS participation till April 8th, 2022), identification and structural studies of compounds and materials (PBMR, FAU, UWR, UNIVIE, and SPS; INEOS RAS - participation till April 8th, 2022), characterization of interactions between ligands/clathrochelates/materials and biomolecules by CD, UV-VIS, fluorescence ITC, IR, NMR methodology (UWR, FAU, PBMR, UNIVIE, SPS), and biological studies (FAU).
Joint efforts of participants of this multidisciplinary project will provide - the transfer of knowledge between scientists of different research areas, sectors and countries that will enhance level of their professional scientific/technical expertise, -training of young researchers, very important for their further scientific success or industrial career, - enhancement of research activity and network of participating Institutions, - new long-term collaborations between the partners, - increase of academia-industry interactions, so valuable for innovative ideas and discoveries, and pair scientific excellence with social awareness and understanding of current tasks and problems of science.

→ More information

Term: 1. May 2017 - 30. April 2019
Funding source: European Fellowships (EF)
Project leader: Andreas Hirsch
Andreas Hirsch

Prof. Dr. Andreas Hirsch

  • Scopus: Page of Andreas Hirsch
  • ORCID: Page of Andreas Hirsch

The overarching goal of the Hy-solFullGraph project is to undertake, from a molecular level, the synthesis of new functional hybrid materials based on carbon allotropes with outstanding properties. Synthetic carbon allotropes (SCAs) are regarded to be among the most promising candidates for future high performance materials. Precise control of the derivatisation will play…

→ More information

Term: 1. July 2016 - 30. June 2017
Funding source: Bayerische Staatsministerien

→ More information

Term: 1. July 2016 - 30. June 2019
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
Project leader: Rainer Fink
Rainer Fink

Prof. Dr. Rainer Fink

  • Publons: Page of Rainer Fink
  • Scopus: Page of Rainer Fink
  • Google Scholar: Page of Rainer Fink
  • ORCID: Page of Rainer Fink

→ More information

Term: 1. January 2016 - 31. December 2017
Funding source: Deutscher Akademischer Austauschdienst (DAAD)
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

→ More information

Term: since 1. January 2016
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: Hans-Peter Steinrück
Hans-Peter Steinrück

Prof. Dr. Dr. h.c. Hans-Peter Steinrück (Senior Professor)

→ More information

Term: 1. September 2015 - 31. August 2020
Funding source: ERC Consolidator Grant

→ More information

Term: 1. June 2015 - 31. January 2016
Funding source: Industrie

→ More information

Term: since 1. August 2014
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: Ivana Ivanovic-Burmazovic

H2S is a highly toxic and corrosive environmental pollutant, which removal is necessary for pollution control and processing requirements in industry. In our recently filed patent (WO2012175630 A1 20121227) we describe an invention demonstrating that specially modified water soluble Fe, Mn, Co and Ni porphyrins (in particularly, highly positively charged ones) can be used for very efficient catalytic oxidation of H2S by O2 in pH neutral media. There is no need for separate catalyst re-oxidation,…

→ More information

Term: since 1. September 2013
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: Hans-Peter Steinrück
Hans-Peter Steinrück

Prof. Dr. Dr. h.c. Hans-Peter Steinrück (Senior Professor)

Ionische Flüssigkeiten (engl. Ionic liquids, ILs) sind geschmolzene Salze mit Schmelzpunkten unterhalb von 100°C. Ihre strukturelle Vielfalt eröffnet nahezu unbegrenzte Möglichkeiten für die Kombination von Kationen und Anionen mit unterschiedlichen Eigenschaften. Dies erlaubt die gezielte Variation der physikalisch-chemischen Eigenschaften über einen weiten Bereich und die Anpassung an spezifische Anforderungen. Nachdem anfänglich nur die Volumeneigenschaften der ILs im Vordergrund standen, wurde …

→ More information

Term: 1. July 2013 - 31. December 2013
Funding source: Deutsche Forschungsgemeinschaft (DFG)
Project leader: Hans-Peter Steinrück
Hans-Peter Steinrück

Prof. Dr. Dr. h.c. Hans-Peter Steinrück (Senior Professor)

→ More information

Term: 1. October 2012 - 31. October 2013
Funding source: Industrie
Project leader: Jürgen Schatz
Jürgen Schatz

Prof. Dr. Jürgen Schatz

Dekan der Naturwissenschaftlichen Fakultät

→ More information

Term: 15. August 2012 - 14. August 2013
Funding source: Siemens AG
Project leader: Ivana Ivanovic-Burmazovic

→ More information

Term: 1. August 2012 - 31. August 2017
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: M. Alexander Schneider, Jörg Libuda
Jörg Libuda

Prof. Dr. Jörg Libuda

  • LinkedIn: Page of Jörg Libuda
  • Publons: Page of Jörg Libuda
  • Google Scholar: Page of Jörg Libuda
  • ORCID: Page of Jörg Libuda

Cobalt oxide has recently turned out to be a novel, highly active heterogeneous catalyst for key processes in future energy and environmental technology. This includes e.g. low-temperature CO oxidation, the related PROX reaction (preferential oxidation of CO in excess H2), the total oxidation of VOCs (volatile organic compounds), and the reforming of hydrocarbon oxygenates for hydrogen production. Most importantly, cobaltoxide- based catalysts hold a unique potential for replacing or reducing…

→ More information

Term: 1. February 2010 - 31. January 2015
Funding source: EU - 7. RP / Ideas / ERC Advanced Investigator Grant (AdG)
Project leader: Andreas Hirsch
Andreas Hirsch

Prof. Dr. Andreas Hirsch

  • Scopus: Page of Andreas Hirsch
  • ORCID: Page of Andreas Hirsch

We propose the development of modern wet chemical concepts for the mass production and chemical modification of graphene - a rapidly rising star on the horizon of materials science - opening the door for superior but still elusive applications such as transparent electrodes, field effect transistors, solar cells, gas sensors and polymer enforcement. Owing to its spectacular electronic properties graphene is expected to be the most promising candidate to replace classical Si-technology and no longer…

→ More information

Term: 1. August 2008 - 30. August 2011
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: Andreas Hirsch
Andreas Hirsch

Prof. Dr. Andreas Hirsch

  • Scopus: Page of Andreas Hirsch
  • ORCID: Page of Andreas Hirsch

Graphene confined in one dimensional spaces, e.g. ribbons, represents one of the most promising materials for nanoscale semiconductor devices. However, convenient methods of producing such materials on surfaces suitable for device manufacture are lacking. A new oligomer approach to the synthesis of graphene ribbons on semiconductor surfaces is proposed, based upon oxidative aryl-aryl coupling reactions and Diels-Alder chemistry. This method will surpass current approaches based upon high-temperature…

→ More information

Term: 1. May 2003 - 30. July 2013
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: Andreas Hirsch
Andreas Hirsch

Prof. Dr. Andreas Hirsch

  • Scopus: Page of Andreas Hirsch
  • ORCID: Page of Andreas Hirsch

Amphiphile Lipofullerene (A.L.F.) sind Fullerenhexaaddukte, die mit Alkylketten und mit hydrophilen Dendronen modifiziert sind. Die Dendrone besitzen als Endgruppen Säurefunktionen. Diese Verbindungen besitzen gegenüber herkömmlichen Amphiphilen einige neue Merkmale, die zu deutlich veränderten Eigenschaften der Liposomen führen. Sie bilden sehr stabile Liposomen, die darüber hinaus im Gegensatz zu herkömmlichen leicht in ihren Aggregationseigenschaften durch…

→ More information

Term: 1. April 2001 - 30. June 2007
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: Hans-Peter Steinrück
Hans-Peter Steinrück

Prof. Dr. Dr. h.c. Hans-Peter Steinrück (Senior Professor)

Das vorliegende Projekt befaßt sich mit in situ-Röntgenphotoelektronenspektroskopie zur Untersuchung von Adsorptions- und Reaktionsvorgängen an Oberflächen. Die Experimente sollen z.T. unter Verwendung von hochintensiver Synchrotronstrahlung bei BESSY II in Berlin und z.T. im Labor in Erlangen durchgeführt werden. Dazu steht ein neues Elektronenspektrometer mit integriertem überschalldüsenstrahl zur Verfügung. Ein wesentliches Ziel der geplanten Arbeiten ist es, anhand der Untersuchungen zweier …

→ More information

Term: 1. December 2024 - 31. December 2025
Project leader: Carolin Müller
Carolin Müller

Prof. Dr. Carolin Müller

  • Twitter: Page of Carolin Müller
  • LinkedIn: Page of Carolin Müller
  • Google Scholar: Page of Carolin Müller
  • ORCID: Page of Carolin Müller
  • Research Gate: Page of Carolin Müller

→ More information

Term: 15. July 2024 - 15. July 2025
Project leader: Carolin Müller
Carolin Müller

Prof. Dr. Carolin Müller

  • Twitter: Page of Carolin Müller
  • LinkedIn: Page of Carolin Müller
  • Google Scholar: Page of Carolin Müller
  • ORCID: Page of Carolin Müller
  • Research Gate: Page of Carolin Müller

→ More information

Term: 1. January 2024 - 31. December 2024
Project leader: Pablo Jiménez Calvo

The central focus of SOLAREC project is the creation of plasmonic Schottky junctions, M/(Pd or Au)CN as monometallic functional binary nanomaterials. How? By synthesizing gold and palladium nanoparticles (NPs) with 2 to 10 nm size to exploit their quantum effect and plasmonic properties, like hot electron injection, co-catalytic functions, and electron trap site functionalities. To maximize such metal NPs’ functionalities, its fundamental to ensure close interaction with a visible-light absorber. F…

→ More information

Term: 1. April 2019 - 31. March 2021
Project leader: Helene Loos
Helene Loos

PD Dr. Habil. Helene Loos

  • ORCID: Page of Habil. Helene Loos

Chemical signals play a major role in physiological processes and are potent modulators of behaviour. The possible implication of chemosensory information in human social interaction, however, has long been neglected. Despite this, evidence is accumulating that an individual’s chemical signature bears not only information about genetically determined traits, but also about transient states such as the individual’s emotional or health status. The emerging field of human chemocommunication hence offers the intriguing possibility to make use of body odour signatures as an unobtrusive measure of internal states. The goal of this project is to develop tools for a new chemocommunication platform that is about to be established in a collaborative project of this consortium, including data scientists, psychologists, medical scientists, and chemists.

→ More information

Term: 1. February 2023 - 31. January 2026
Funding source: BMBF / Verbundprojekt
Project leader: Karl Mandel
Karl Mandel

Prof. Dr. Karl Mandel

→ More information

Term: 1. January 2023 - 31. December 2025
Funding source: Bundesministerien
Project leader: Dagmar Fischer
Dagmar Fischer

Prof. Dr. Dagmar Fischer, Apoth.

Chair

  • Google Scholar: Page of Dagmar Fischer
  • Research Gate: Page of Dagmar Fischer

The aim of this project is to develop a transport system for the oral administration of mRNA vaccines that ensures the safe, stable, and efficient transfer of mRNA to the intestine through the use of acid-stable special lipids. Advantages include (1) a patient-friendly form of administration, (2) potentially better biodistribution and higher stability of the mRNA active ingredients, and (3) a simple and sustainable manufacturing process. This should make mRNA vaccinations simple, cost-efficient, and possible without major logistical effort, e.g., even in developing countries. 

Lipid vesicles are particularly suitable for this purpose. Conventional lipid vesicles are unstable at the low pH value of the stomach. Membrane lipids of thermoacidophilic archaea contain aliphatic nonpolar chains that are linked to the polar head groups via ether bonds instead of ester bonds. In addition, some of the lipids are structured in such a way that they have polar head groups at both ends and span the entire membrane. In contrast to conventional cell membranes, they form a monolayer that is stable at high temperatures and low pH values. Due to their structure, archaeal lipids are also called tetraether lipids, and the vesicles formed from them are known as archaeosomes. In the planned project, the cultivation process of Archaeon Picrophilus oshimae as a starting material is to be optimized, standardized, and prepared for large-scale production.

→ More information

Term: 1. October 2021 - 30. September 2024
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
Project leader: Karl Mandel
Karl Mandel

Prof. Dr. Karl Mandel

→ More information

Term: 1. July 2021 - 31. December 2025
Funding source: DFG / Sonderforschungsbereich / Transregio (SFB / TRR)
Project leader: Dagmar Fischer
Dagmar Fischer

Prof. Dr. Dagmar Fischer, Apoth.

Chair

  • Google Scholar: Page of Dagmar Fischer
  • Research Gate: Page of Dagmar Fischer

The Collaborative Research Center PolyTarget is developing polymer-based, nanoparticulate carrier materials for the targeted application of active pharmaceutical ingredients. In the foreground are systems that are suitable for the treatment of diseases and syndromes whose morbidity is significantly characterized by an inflammatory reaction

→ More information

Term: 1. January 2021 - 31. December 2024
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Dirk Zahn
Dirk Zahn

Prof. Dr. Dirk Zahn

Project M03 will perform molecular dynamics simulations for the in-depth understanding of effects that occur at the nanometre scale such as the self-organisation of IL layers and films (Kawska-Zahn approach). To account for charge polarisation in metal droplets and nanoparticles, the MM models will be extended by QeQ approaches. This effectively expands QM characterisation to MD simulations reaching the million atoms scale. Using multi-state MM models triggered by QM/MM calculations, the relaxation…

→ More information

Term: 1. January 2021 - 31. December 2024
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Andreas Görling
Andreas Görling

Prof. Dr. Andreas Görling

The project aims at a microscopic quantum mechanical description of catalytic materials and processes in the three Areas A, B, and C (SCALMS, Interface-enhanced SILP, and Advanced SCILL). We will interpret and explain experimental data and develop and suggest strategies to optimise catalytic materials and processes. Based on conventional and newly developed density-functional methods (i) ab initio molecular dynamics simulations will be performed and (ii) slab and cluster models as well as (iii)…

→ More information

Term: 1. January 2021 - 31. December 2024
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Olga Kasian, Jörg Libuda
Jörg Libuda

Prof. Dr. Jörg Libuda

  • LinkedIn: Page of Jörg Libuda
  • Publons: Page of Jörg Libuda
  • Google Scholar: Page of Jörg Libuda
  • ORCID: Page of Jörg Libuda

In Project C05, we will explore the potential of Advanced SCILLs in electrocatalytic hydrogenation. Using a broad range of EC in situ spectroscopies, microscopies, and advanced EC characterisation methods, we will scrutinise the selective hydrogenation of unsaturated ketones and nitriles on a broad range of test electrodes (single crys-tals, atomically defined model electrodes, complex alloys and supported nanoalloys). At the electrified interface, we will explore (i) how ILs interact with specific…

→ More information

Term: 1. January 2021 - 31. December 2024
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Jörg Libuda
Jörg Libuda

Prof. Dr. Jörg Libuda

  • LinkedIn: Page of Jörg Libuda
  • Publons: Page of Jörg Libuda
  • Google Scholar: Page of Jörg Libuda
  • ORCID: Page of Jörg Libuda

In Project C03, we will elucidate the fundamental interaction mechanisms between functionalised ILs and catalytically active surfaces and their role in catalytic hydrogenation. To this aim, we will combine in situ studies at single crystals and atomically defined model catalysts in UHV with operando spectroscopy on real SCILLs under true working conditions. Our key tools will be vibrational spectroscopy (IRAS, PM-IRAS, DRIFTS) in combination with online analytics of products (MB experiments, TPD,…

→ More information

Term: 1. January 2021 - 31. December 2024
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Hans-Peter Steinrück
Hans-Peter Steinrück

Prof. Dr. Dr. h.c. Hans-Peter Steinrück (Senior Professor)

We aim at understanding the fundamental processes and the chemical/morphological stability of IL/solid interfaces in Advanced SCILLs. We will proceed in three steps: for non-functionalised and functionalised ILs, we will investigate (a) the chemical interaction and the wetting behaviour of (ultra)thin IL films on the supporting solid on a wide range of well-defined substrates, (b) the stability of Advanced SCILL systems from the point of view of interface chemistry and morphology, and finally,…

→ More information

Term: 1. January 2021 - 31. December 2024
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Thomas Manfred Koller, Hans-Peter Steinrück
Hans-Peter Steinrück

Prof. Dr. Dr. h.c. Hans-Peter Steinrück (Senior Professor)

We aim at understanding the fundamental processes that determine the properties of the gas/liquid interface of Interface-enhanced SILPs. Towards this aim, the Steinrück and Koller groups will apply X-ray photoelectron spectroscopy under ultraclean conditions and the pendant drop method as well as surface light scattering under reac-tion conditions. This enables to develop relationships between the surface properties on the nanometre scale and the macroscopic properties surface tension, viscosity …

→ More information

Term: 1. January 2021 - 31. December 2024
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Karsten Meyer
Karsten Meyer

Prof. Dr. Karsten Meyer

  • Publons: Page of Karsten Meyer
  • ORCID: Page of Karsten Meyer

Project B01 focuses on the design and synthesis of functionalised and task-specific ILs, with the aim (i) to tailor support/IL interfaces and (ii) to develop electrocatalytically active interface-enhanced SILPs. The latter concept will combine catalytic functionalities operating at both the gas/IL and the IL/solid interfaces for the electrochemical production of hydrogen from water (or protons) and the hydrogenation of divers C=C and C=O moieties in selected substrates. These two processes shall…

→ More information

Term: 1. January 2021 - 31. December 2024
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Christian Papp, Peter Wasserscheid

A06 focuses on the technical dimension of SCALMS by exploring quantitatively the expected enhanced poisoning resistance and stability in dehydrogenation catalysis. For the specific case of isobutane dehydrogenation, we will perform systematic poisoning experiments under surface science and technical conditions. The data will be compared to traditional catalysts. Spectroscopic and reaction engineering studies will be applied to determine the concentration, reactivity, and regenerability of active…

→ More information

Term: 1. January 2021 - 31. December 2024
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

→ More information

Term: 1. January 2021 - 31. December 2024
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Christian Papp

A01 aims at understanding the catalytic properties of SCALMS and the dynamic behaviour of the active sites at the gas/liquid interface to enable their knowledge-based improvement. We will study model and real-world cata-lysts in UHV and near-ambient pressure to technical operating conditions. Towards providing a full “depth-resolved” picture, we will employ laboratory- and synchrotron-based X-ray spectroscopic techniques with specific surface or bulk sensitivity. The fundamental studies will rev…

→ More information

Term: 1. January 2021 - 31. December 2022
Funding source: EU - 8. Rahmenprogramm - Horizon 2020
Project leader: Peter Bell, Andrea Büttner, Andreas Maier
Andrea Büttner

Prof. Dr. Andrea Büttner

  • LinkedIn: Page of Andrea Büttner
  • Xing: Page of Andrea Büttner
  • Publons: Page of Andrea Büttner
  • Scopus: Page of Andrea Büttner
  • Google Scholar: Page of Andrea Büttner
  • ORCID: Page of Andrea Büttner
  • Research Gate: Page of Andrea Büttner

Our senses are gateways to the past. Although museums are slowly discovering the power of multi-sensory presentations, we lack the scientific standards, tools and data to identify, consolidate, and promote the wide-ranging role of scents and smelling in our cultural heritage. In recent years, European cultural heritage institutions have invested heavily in large-scale digitization. A wealth of object, text and image data that can be analysed using computer science techniques now exists. However,…

→ More information

Term: 1. January 2021 - 31. December 2024
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Thomas Manfred Koller, Hans-Peter Steinrück
Hans-Peter Steinrück

Prof. Dr. Dr. h.c. Hans-Peter Steinrück (Senior Professor)

We aim at understanding the fundamental processes that determine the properties of the gas/liquid interface of Interface-enhanced SILPs. Towards this aim, the Steinrück and Koller groups will apply X-ray photoelectron spectroscopy under ultraclean conditions and the pendant drop method as well as surface light scattering under reaction conditions. This enables to develop relationships between the surface properties on the nanometre scale and the macroscopic properties surface tension, viscosity …

→ More information

Term: 1. October 2020 - 30. September 2023
Funding source: Leadership in Enabling & Industrial Technologies (LEIT)
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

→ More information

Term: 1. May 2020 - 30. April 2022
Funding source: EU - 8. Rahmenprogramm - Horizon 2020
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

→ More information

Term: 1. January 2019 - 31. December 2023
Funding source: Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (StMWIVT) (ab 10/2013)
Project leader: Hans-Peter Steinrück, Christian Papp
Hans-Peter Steinrück

Prof. Dr. Dr. h.c. Hans-Peter Steinrück (Senior Professor)

→ More information

Term: 1. January 2019 - 31. December 2022
Funding source: BMBF / Verbundprojekt
Project leader: Julien Bachmann, Carolin Körner
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

→ More information

Term: 1. April 2016 - 31. March 2018
Funding source: Future and Emerging Technologies (FET)
Project leader: Andreas Hirsch
Andreas Hirsch

Prof. Dr. Andreas Hirsch

  • Scopus: Page of Andreas Hirsch
  • ORCID: Page of Andreas Hirsch

→ More information

Term: 30. March 2015 - 29. December 2020
Funding source: Future and Emerging Technologies (FET)
Project leader: Andreas Hirsch
Andreas Hirsch

Prof. Dr. Andreas Hirsch

  • Scopus: Page of Andreas Hirsch
  • ORCID: Page of Andreas Hirsch

This Flagship aims to take graphene and related layered materials from a state of raw potential to a point where they can revolutionize multiple industries - from flexible, wearable and transparent electronics, to new energy applications and novel functional composites.Our main scientific and technological objectives in the different tiers of the value chain are to develop material technologies for ICT and beyond, identify new device concepts enabled by graphene and other layered materials, and…

→ More information

Term: since 1. January 2015
Funding source: DFG / Schwerpunktprogramm (SPP)
Project leader: Andreas Görling
Andreas Görling

Prof. Dr. Andreas Görling

This joint experimental and theoretical project aims at the development of facile and environmentally friendly organocatalytic multi-step domino reactions exploiting dispersion interactions in these novel systems. We plan to conduct a series of multi-component domino reactions involving readily available nitroolefins and aldehydes, as well as CH-acidic malononitrile already known for its broad application and its versatile use as an exceptionally reactive compound. We will mainly…

→ More information

Term: 1. April 2014 - 30. May 2017
Funding source: DFG - Forschungsgruppen
Project leader: Hans-Peter Steinrück
Hans-Peter Steinrück

Prof. Dr. Dr. h.c. Hans-Peter Steinrück (Senior Professor)

Planar transition metal complexes, such as porphyrins and phthalocyanines, adsorbed on solid supports are interesting systems for sensors and heterogeneous catalysis. An important feature of these complexes, compared to supported metal clusters, is the fact that the active sites, i.e., the coordinated metal centers with their vacant axial coordination sites, are well-defined and uniform. From the application point of view, this promises high selectivity, and from the research point…

→ More information

Term: 1. January 2014 - 30. September 2017
Funding source: DFG - Forschungsgruppen
Project leader: Hans-Peter Steinrück
Hans-Peter Steinrück

Prof. Dr. Dr. h.c. Hans-Peter Steinrück (Senior Professor)

Knowledge-based design of organic/oxide interfaces requires detailed insights into molecule-oxide bond formation. This project aims at providing this information, combining two complementary surface spectroscopies, surface vibrational spectroscopy (IRAS, infrared reflection absorption spectroscopy) and photoelectron spectroscopy (XPS, X-ray photoelectron spectroscopy), both under UHV (ultrahigh vacuum) conditions.Starting from ordered, atomically clean oxides (MgO(100)/Ag(100), later Co3O4,CoO/Ir(100)…

→ More information

Term: 1. October 2013 - 30. September 2022
Funding source: DFG / Graduiertenkolleg (GRK)
Project leader: Sabine Maier, Rainer Fink
Sabine Maier

Prof. Dr. Sabine Maier

Rainer Fink

Prof. Dr. Rainer Fink

  • Publons: Page of Rainer Fink
  • Scopus: Page of Rainer Fink
  • Google Scholar: Page of Rainer Fink
  • ORCID: Page of Rainer Fink

Scanning probe microscopy allows quantitative measurements of structural, mechanical and electronic properties of molecular systems on metal surfaces. Using scanning tunneling microscopy, atoms and molecules can be manipulated in a controlled manner and their electronic density of states is measured.  The forces needed to manipulate and deform individual molecules are often unknown. In this project area, the forces between individual molecules, as well as molecular switches on surfaces, are investigated …

→ More information

Term: 1. October 2013 - 30. September 2022
Funding source: DFG / Graduiertenkolleg (GRK)
Project leader: Rainer Fink, Christoph Brabec
Rainer Fink

Prof. Dr. Rainer Fink

  • Publons: Page of Rainer Fink
  • Scopus: Page of Rainer Fink
  • Google Scholar: Page of Rainer Fink
  • ORCID: Page of Rainer Fink
Christoph J. Brabec

Prof. Dr. Christoph J. Brabec

Metal-organic charge-transfer complexes based on TCNQ shows exciting electrical or photochemical switching properties, which involves modification of the valence state of TCNQ (TCNQ-/TCNQ°). We use complementary microspectroscopic tools to investigate in-situ the switching behaviour of individual Ag-TCNQ nanocrystals. Structural probes like Nano-XRD and electron diffraction are considered to offer insight into potential structural modifications upon electrical switching.

→ More information

Term: 1. October 2013 - 31. March 2016
Funding source: EU - 7. RP / Capacities / Kombination Verbundprojekt mit Koordinierungs- und Unterstützungsmaßnahme (CP-CSA)
Project leader: Andreas Hirsch
Andreas Hirsch

Prof. Dr. Andreas Hirsch

  • Scopus: Page of Andreas Hirsch
  • ORCID: Page of Andreas Hirsch

This Flagship aims to take graphene and related layered materials from a state of raw potential to a point where they can revolutionize multiple industries - from flexible, wearable and transparent electronics, to new energy applications and novel functional composites.Our main scientific and technological objectives in the different tiers of the value chain are to develop material technologies for ICT and beyond, identify new device concepts enabled by graphene and other layered materials, and…

→ More information

Term: since 1. August 2013
Funding source: DFG - Forschungsgruppen
Project leader: Rainer Fink
Rainer Fink

Prof. Dr. Rainer Fink

  • Publons: Page of Rainer Fink
  • Scopus: Page of Rainer Fink
  • Google Scholar: Page of Rainer Fink
  • ORCID: Page of Rainer Fink

Das Ziel von funCOS 4 ist ein vertieftes Verständnis der fundamentalen Prozesse beim Wachstum von unterschiedlich synthetisierten organischen Dünnschichtsystemen auf Oxidoberflächen (einkristalline Substrate, nanostrukturierte Substrate, amorphe Substrate). Dies beinhaltet Wechselwirkungsphänomene, insbesondere das Zusammenspiel zwischen intermolekularen Wechselwirkungen und Molekül-Substrat-Wechselwirkung, die maßgebend für das Wachstum von organischen ultradünnen Filmen sind. Die strukturellen Eigensc…

→ More information

Term: since 1. August 2013
Funding source: DFG - Forschungsgruppen
Project leader: Andreas Görling
Andreas Görling

Prof. Dr. Andreas Görling

With the help of electronic structure calculations, the project aims at a comprehensive theoretical understanding at the microscopic level of the adsorbate-substrate and adsorbate-adsorbate interactions of functionalized organic molecules on structured oxide surfaces, which eventually shall enable a controlled formation of organic films with specific structural, electronic and optical properties.…

→ More information

Term: 1. December 2012 - 30. November 2016
Funding source: EU - 7. RP / Cooperation / Verbundprojekt (CP)

M3d is a FP7 European project aiming at developing advanced magnetic materials suitable for designing a data storage solution in three dimensions (3D). Conventional planar (2D) devices are expected to reach the limits of scaling within less than a decade, so that long-term massive progress could only be achieved by exploiting the third dimension. We will develop the materials needed for such 3D memories based on magnetic shift-register devices, namely dense arrays of vertical magnetic wires in…

→ More information

Term: 1. November 2012 - 31. August 2017
Funding source: BMBF / Verbundprojekt

→ More information

Term: since 1. January 2012
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Andreas Hirsch
Andreas Hirsch

Prof. Dr. Andreas Hirsch

  • Scopus: Page of Andreas Hirsch
  • ORCID: Page of Andreas Hirsch

Das Projekt A1 stellt die Materialbasis für drei Verbindungsklassen (synthetic carbon allotropes – SCA) des SFB sicher, nämlich 1) Fullerene, 2) Kohlenstoffnanoröhren und 3) Graphen und jeweils deren Derivate. Das Projekt ist in drei Arbeitspakete (WPs) unterteilt. Im WP1 wird der erste systematische Zugang zu SCA-Hydriden und –Carboxylaten, einschließlich der Entwicklung von Wasserstoff-Speicher-Systemen, der Postfunktionalisierung und dem effizienten Trennen…

→ More information

Term: 1. January 2012 - 31. December 2019
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Hans-Peter Steinrück, Christian Papp
Hans-Peter Steinrück

Prof. Dr. Dr. h.c. Hans-Peter Steinrück (Senior Professor)

Ziel des Teilprojektes ist die chemische Modifizierung von Graphenschichten auf Metalloberflächen durch Heteroatome (N, B). Die vorgesehenen Strategien umfassen Voradsorption von N-haltigen (NO, C2N2, Pyridin) oder B-haltigen Molekülen (Diethylmethoxyboran), Dosierung reaktiver Spezies mit einem überschalldüsenstrahl, Funktionalisierung mit Rylenen und Porphyrinen, Hydrogenierung zu Graphan und Interkalation von Metallen. Darüber hinaus soll auch die in situ Synthese makromolekularer Strukturen auf …

→ More information

Term: since 1. January 2012
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Andreas Görling
Andreas Görling

Prof. Dr. Andreas Görling

Im Projekt sollen Kohlenstoffmaterialien, Fullerene, Polyine, Graphene wie auch bisher noch nicht synthetisierte Kohlenstoffallotrope wie beispielsweise Graphyne mit nichtempirischen elektronischen Strukturmethoden insbesondere etablierten wie neu zu entwickelnden Dichtefunktionalmethoden untersucht werden. Mit dem Ziel neue Kohlenstoffverbindungen und -materialien herzustellen sollen deren Bildung, Struktur und Energetik wie auch ihre spektroskopischen und elektronischen Eigenschaften analysiert…

→ More information

Term: since 1. January 2012
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Timothy Clark, Bernd Meyer
Bernd Meyer

Prof. Dr. Bernd Meyer

Ziel des Projektes ist die Entwicklung und Anwendung von schnellen parametrisierten quantenmechanischen Techniken (semiempirische Molekülorbital-Theorie und Dichtefunktional-basiertes tight binding, TB), um große Aggregate, die Kohlenstoff-Allotrope enthalten, zu berechnen und Reaktionsmechanismen zu bestimmen. Die dynamischen Eigenschaften von flexiblen molekularen Anordnungen werden sowohl mit klassisch-mechanischer als auch mit direkter TB Moleküldynamik und Metadynamik untersucht.…

→ More information

Term: 1. November 2007 - 31. October 2017
Funding source: DFG / Exzellenzcluster (EXC)
Project leader: Erik Bitzek, Bernd Meyer
Bernd Meyer

Prof. Dr. Bernd Meyer

→ More information

Term: 1. November 2006 - 1. June 2012
Funding source: DFG / Schwerpunktprogramm (SPP)
Project leader: Timothy Clark

→ More information

Term: 1. July 2004 - 30. June 2012
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Ivana Ivanovic-Burmazovic

→ More information

Term: 1. July 2004 - 30. June 2012
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Hans-Peter Steinrück
Hans-Peter Steinrück

Prof. Dr. Dr. h.c. Hans-Peter Steinrück (Senior Professor)

→ More information

Term: 1. July 2001 - 1. June 2012
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Timothy Clark

→ More information

Term: 1. July 2001 - 1. June 2012
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Andreas Hirsch
Andreas Hirsch

Prof. Dr. Andreas Hirsch

  • Scopus: Page of Andreas Hirsch
  • ORCID: Page of Andreas Hirsch

→ More information

Term: 1. May 2020 - 30. April 2022
Funding source: EU - 8. Rahmenprogramm - Horizon 2020
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

→ More information

Term: 1. May 2020 - 30. April 2022
Funding source: Excellent Science
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

→ More information

Term: 1. February 2019 - 31. December 2022
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
Project leader: Julien Bachmann
Julien Bachmann

Prof. Dr. Julien Bachmann

  • Twitter: Page of Julien Bachmann
  • LinkedIn: Page of Julien Bachmann
  • Publons: Page of Julien Bachmann
  • Google Scholar: Page of Julien Bachmann
  • ORCID: Page of Julien Bachmann

→ More information

Term: since 1. January 2012
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader: Andreas Hirsch
Andreas Hirsch

Prof. Dr. Andreas Hirsch

  • Scopus: Page of Andreas Hirsch
  • ORCID: Page of Andreas Hirsch

Synthetic carbon allotropes such as fullerenes, carbon nanotubes and graphene currently represent one of the most promising materials families with enormous potential for high-performance applications in the fields of nanoelectronics, optoelectonics, hydrogen storage, sensors and reinforcements of polymers based on their unprecedented electronic, optical, mechanical and chemical properties. Because of the almost limitless possibilities of constructing both discrete and extended networks of sp-,…

→ More information

Friedrich Alexander University Erlangen-Nürnberg
Department of Chemistry and Pharmacy

Nikolaus-Fiebiger-Str. 10
91058 Erlangen
Germany
  • Imprint
  • Privacy
  • Accessibility
  • RSS Feed
  • Instagram
Up