Publications

Publications

Publications in peer-reviewed journals:

  1. Controlling Intramolecular Interactions in the Design of Selective, High-Affinity, Ligands for the CREBBP Bromodomain. M. Brand, J. Clayton, M. Moroglu, M. Schiedel, S. Picaud, J. Bluck, A. Skwarska, H. Bolland, A.K.N. Chan, C.M.C. Laurin, A.R. Scorah, L. See, T.P.C. Rooney, K.H. Andrews, O. Fedorov, G, Perell, P. Kalra, K.B. Vinh, W.A. Cortopassi, P. Heitel, K.E. Christensen, R.I. Cooper, R.S. Paton, W.C.K. Pomerantz, P.C. Biggin, E.M. Hammond, P. Filippakopoulos, S.J Conway. J. Med. Chem. (2021), accepted manuscript: https://doi.org/10.1021/acs.jmedchem.1c00348. Impact factor: 6.205
  2. Call for Papers: “Epigenetics 2.0”—A Joint Virtual Special Issue on Epigenetics. Bhatia#, F.K. Hansen#, M. Schiedel#. ACS Pharmacol. Transl. Sci. (2021), accepted manuscript: https://doi.org/10.1021/acsptsci.1c00156 [#shared corresponding authorship]. Impact factor: not yet available
  3. Fragment-based identification of ligands for bromodomain-containing factor 3 of Trypanosoma cruzi. C. Laurin, J. Bluck, A. Chan, M. Keller, A. Boczek, A. Scorah, K.F. See, L. Jennings, D. Hewings, F. Woodhouse, J. Reynolds, M. Schiedel, P. Humphreys, P. Biggin, S. Conway,  ACS Infect. Dis. (2020), accepted manuscript, https://doi.org/10.1021/acsinfecdis.0c00618. Impact factor: 4.614
  4. HaloTag-targeted Sirtuin rearranging ligand (SirReal) for the development of proteolysis targeting chimeras (PROTACs) against the lysine deacetylase Sirtuin 2 (Sirt2). M. Schiedel, A. Lehotzky, S. Szunyogh, J. Oláh, S. Hammelmann, N. Wössner, D. Robaa, O. Einsle, W. Sippl, J. Ovádi, M. Jung. ChemBioChem (2020), accepted manuscript. https://doi.org/10.1002/cbic.202000351. Impact factor: 2.576
  5. Validation of slow off-kinetics of sirtuin rearranging ligands (SirReals) by means of the label-free electrically switchable nanolever technology. M. Schiedel*, H. Daub*, A. Itzen, M. Jung [*contributed equally]. ChemBioChem 21 (2020), 1161-1166. https://doi.org/10.1002/cbic.201900527. Impact factor: 2.576
  6. Chemical epigenetics: the impact of chemical- and chemical biology techniques on bromodomain target validation. M. Schiedel, M. Moroglu, D.M.H. Ascough, A.E.R. Chamberlain, J.J.A.G. Kamps, A.R. Sekirnik, S.J. Conway. Angew. Chem. Int. Ed. 58 (2019), 17930-17952. https://doi.org/10.1002/anie.201812164. Chemische Epigenetik: der Einfluss chemischer und chemo‐biologischer Techniken auf die Zielstruktur‐Validierung von Bromodomänen. Angew. Chem. 131 (2019), 18096-18120. https://doi.org/10.1002/ange.201812164. Impact factor: 12.959
  7. Opening the selectivity pocket in the human lysine deacetylase sirtuin 2 – New opportunities, new questions. Robaa, D. Monaldi, N. Wössner, N. Kudo, T. Rumpf, M. Schiedel, M. Yoshida, M. Jung. Chem. Rec. 18 (2018), 1701-1707. https://doi.org/10.1002/tcr.201800044. Impact factor: 5.387
  8. Small molecules as tools to study the chemical epigenetics of lysine acetylation. M. Schiedel#, S.J. Conway# [#shared corresponding authorship]. Curr. Opin. Chem. Biol. 45 (2018), 166-178. https://doi.org/10.1016/j.cbpa.2018.06.015. Impact factor: 8.544
  9. BET bromodomain ligands: Probing the WPF shelf to improve BRD4 bromodomain affinity and metabolic stability. L.E. Jennings*, M. Schiedel*, D.S. Hewings, S. Picaud, C.M.C. Laurin, P.A. Bruno, J.P. Bluck, A.R. Scorah, L. See, J.K. Reynolds, M. Moroglu, I.N. Mistry, A. Hicks, P. Guzanov, J. Clayton, C.N.G. Evans, G. Stazi, P.C. Biggin, A.K. Mapp, E.M. Hammond, P.G. Humphreys, P. Filippakopoulos, S.J. Conway [*contributed equally]. Bioorg. Med. Chem. 26 (2018), 2937-2957. https://doi.org/10.1016/j.bmc.2018.05.003. Impact factor: 2.802
  10. New chemical tools for probing activity and inhibition of the NAD+ dependent lysine deacylase sirtuin 2. S. Swyter*, M. Schiedel*, D. Monaldi, S. Szunyogh, A. Lehotzky, T. Rumpf, J. Ovádi, W. Sippl, M. Jung [*contributed equally]. Phil. Trans. R. Soc. B 373 (2018), 20170083. https://doi.org/10.1098/rstb.2017.0083. Impact factor: 6.139
  11. Chemically induced degradation of sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on sirtuin rearranging ligands (SirReals). M. Schiedel, D. Herp, S. Hammelmann, S. Swyter, A. Lehotzky, D. Robaa, J. Olah, J. Ovádi, W. Sippl, M. Jung. J. Med. Chem. 61 (2018), 482-491. https://doi.org/10.1021/acs.jmedchem.6b01872. Impact factor: 6.054
  12. The current state of NAD+-dependent histone deacetylases (sirtuins) as novel therapeutic targets. M.  Schiedel, D, Robaa, T. Rumpf, W. Sippl, M. Jung. Med. Res. Rev. 38 (2018), 147-200. https://doi.org/10.1002/med.21436. Impact factor: 9.791
  13. Modulation of microtubule acetylation by the interplay of TPPP/p25, SIRT2 and new anticancer agents with anti-SIRT2 potency. A. Szabó, J. Oláh, S. Szunyogh, A. Lehotzky, T. Szénási, M. Csaplár, M. Schiedel, P. Lőw, M. Jung, J. Ovádi. Sci. Rep. 7 (2017), 17070. https://doi.org/10.1038/s41598-017-17381-3. Impact factor: 4.122
  14. Synthesis and biological evaluation of 8-hydroxy-2,7-naphthyridin-2-ium salts as novel inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). M. Schiedel, A. Fallarero, C. Luise, W. Sippl, P. Vuorela, M. Jung. MedChemComm 8 (2017), 465-470. https://doi.org/10.1039/C6MD00647G. Impact factor: 2.342
  15. Aminothiazoles as potent and selective Sirt2 inhibitors: A structure-activity relationship study. M. Schiedel, T. Rumpf, B. Karaman, A. Lehotzky, J. Oláh, S. Gerhardt, J. Ovádi, W. Sippl, O. Einsle, M. Jung. J. Med. Chem. 59 (2016), 1599-1612. https://doi.org/10.1021/acs.jmedchem.5b01517. Impact factor: 6.259
  16. A continuous, fluorogenic sirtuin 2 deacylase assay: substrate screening and inhibitor evaluation. I. Galleano, M. Schiedel, M. Jung, A.S. Madsen, C.A. Olsen. J. Med. Chem. 59 (2016), 1021-1031. https://doi.org/10.1021/acs.jmedchem.5b01532. Impact factor: 6.259
  17. Structure-based development of an affinity probe for sirtuin 2. M. Schiedel, T. Rumpf, B. Karaman, A. Lehotzky, S. Gerhardt, J. Ovádi, W. Sippl, O. Einsle, M. Jung. Angew. Chem. Int. Ed. 55 (2016), 2252-2256. https://doi.org/10.1002/anie.201509843. Strukturbasierte Entwicklung einer Affinitätssonde für Sirtuin 2. Angew. Chem. 128 (2016), 2293-2297. https://doi.org/10.1002/ange.201509843. Impact factor: 11.994
  18. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. T. Rumpf, M. Schiedel, B. Karaman, C. Roessler, B.J. North, A. Lehotzky, J. Oláh, K.I. Ladwein, K. Schmidtkunz, M. Gajer, M. Pannek, C. Steegborn, D.A. Sinclair, S. Gerhardt, J. Ovádi, M. Schutkowski, W. Sippl, O. Einsle, M Jung. Nat. Commun. 6 (2015), 6263. https://doi.org/10.1038/ncomms7263. Impact factor: 11.329
  19. Fluorescence-based screening assays for the NAD⁺-dependent histone deacetylase smSirt2 from Schistosoma mansoni. M. Schiedel, M. Marek, J. Lancelot, B. Karaman, I. Almlöf, J. Schultz, W. Sippl, R.J. Pierce, C. Romier, M. Jung. J. Biomol. Screen. 20 (2015), 112-121. https://doi.org/10.1177/1087057114555307. Impact factor: 2.218
  20. Chromo-pharmacophores: photochromic diarylmaleimide inhibitors for sirtuins. Falenczyk, M. Schiedel, B. Karaman, T. Rumpf, N. Kuzmanovic, M. Grøtli, W. Sippl, M. Jung, B. König. Chem. Sci. 5 (2014), 4794-4799. https://doi.org/10.1039/C4SC01346H. Impact factor: 9.211

Other publications:

  1. Epigenetiker treffen sich in Freiburg. [Epigeneticists meet up in Freiburg.] M. Schiedel, M. Jung, Nachr. Chem. 64 (2016), 904. https://doi.org/10.1002/nadc.20164054947.
  2. Epigenetische Wirkstoffforschung. [Epigenetic drug discovery.] M. Schiedel, M. Jung, Nachr. Chem. 62 (2014), 302-306. https://doi.org/10.1002/nadc.201490087.
  3. Resveratrol ist zurück! [Resveratrol is back!] M. Schiedel, M. Jung, Pharmakon. 1 (2013), 446‑448.
  4. Fehlregulation der Histon‐Acetylierung als molekulare Grundlage der Demenzentwicklung. [Dysregulation of histone acetylation as a molecular basis for the development of dementia.] M. Schiedel, M. Jung, Pharm. Unserer Zeit 40 (2011), 297-299. https://doi.org/10.1002/pauz.201190039.
  5. HIV‐1‐Eradikation durch “shock & kill”‐ [HIV-1 eradication with the “shock and kill” strategy.] M. Schiedel, Pharm. Unserer Zeit 39 (2010), 171-173. https://doi.org/10.1002/pauz.201090026.