Machine Learning for Non-adiabatic Molecular Dynamics
Curious about how machine learning is transforming excited-state molecular dynamics?
Our latest overview dives into best practices for applying machine learning in non-adiabatic dynamics simulations, from data pre-processing and surface fitting to post-simulation analysis. Learn how machine learning approaches can help overcome computational bottlenecks and uncover patterns in complex photochemical systems — paving the way for data-driven design of photochemistry and -physics.
Check out our best practices article:
Tutorials
Prof. Dr. Carolin Müller
Department of Chemistry and Pharmacy
Juniorprofessur für die Theorie elektronisch angeregter Zustände
- Phone number: 091318520406
- Email: carolin.cpc.mueller@fau.de